Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Infect Control Hosp Epidemiol ; : 1-5, 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-20244573

ABSTRACT

Sporadic clusters of healthcare-associated coronavirus disease 2019 (COVID-19) occurred despite intense rostered routine surveillance and a highly vaccinated healthcare worker (HCW) population, during a community surge of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) B.1.617.2 δ (delta) variant. Genomic analysis facilitated timely cluster detection and uncovered additional linkages via HCWs moving between clinical areas and among HCWs sharing a common lunch area, enabling early intervention.

2.
Infect Dis Health ; 28(2): 81-87, 2023 05.
Article in English | MEDLINE | ID: covidwho-2286441

ABSTRACT

BACKGROUND: Increased transmissibility of severe-acute-respiratory-syndrome-coronavirus-2(SARS-CoV-2) variants, such as the Omicron-variant, presents an infection-control challenge. We contrasted nosocomial transmission amongst hospitalized inpatients across successive pandemic waves attributed to the Delta- and Omicron variants, over a 9-month period in which enhanced-infection-prevention-measures were constantly maintained. METHODS: Enhanced-infection-prevention-measures in-place at a large tertiary hospital included universal N95-usage, routine-rostered-testing (RRT) for all inpatient/healthcare-workers (HCWs), rapid-antigen-testing (RAT) for visitors, and outbreak-investigation coupled with enhanced-surveillance (daily-testing) of exposed patients. The study-period lasted from 21st June 2021-21st March 2022. Chi-square test and multivariate-logistic-regression was utilized to identify factors associated with onward transmission and 28d-mortality amongst inpatient cases of hospital-onset COVID-19. RESULTS: During the Delta-wave, hospital-onset cases formed 2.7% (47/1727) of all COVID-19 cases requiring hospitalisation; in contrast, hospital onset-cases formed a greater proportion (17.7%, 265/1483; odds-ratio, OR = 7.78, 95%CI = 5.65-10.70) during the Omicron-wave, despite universal N95-usage and other enhanced infection-prevention measures that remained unchanged. The odds of 28d-mortality were higher during the Delta-wave compared to the Omicron-wave (27.7%, 13/47, vs. 10.6%, 28/265, adjusted-odds-ratio, aOR = 2.78, 95%CI = 1.02-7.69). Onward-transmission occurred in 21.2% (66/312) of hospital-onset cases; being on enhanced-surveillance (daily-testing) was independently associated with lower odds of onward-transmission (aOR = 0.18, 95%CI = 0.09-0.38). Costs amounted to $USD7141 per-hospital-onset COVID-19 case. CONCLUSION: A surge of hospital-onset COVID-19 cases was encountered during the Omicron-wave, despite continuation of enhanced infection-prevention measures; mortality amongst hospital-onset cases was reduced. The Omicron variant poses an infection-control challenge in contrast to Delta; surveillance is important especially in settings where infrastructural limitations make room-sharing unavoidable, despite the high risk of transmission.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Pandemics , Tertiary Care Centers
5.
Trop Med Infect Dis ; 7(5)2022 May 07.
Article in English | MEDLINE | ID: covidwho-1862900

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, distinguishing dengue from COVID-19 in endemic areas can be difficult, as both may present as undifferentiated febrile illness. COVID-19 cases may also present with false-positive dengue serology. Hospitalisation protocols for managing undifferentiated febrile illness are essential in mitigating the risk from both COVID-19 and dengue. METHODS: At a tertiary hospital contending with COVID-19 during a dengue epidemic, a triage strategy of routine COVID-19 testing for febrile patients with viral prodromes was used. All febrile patients with viral prodromes and no epidemiologic risk for COVID-19 were first admitted to a designated ward for COVID-19 testing, from January 2020 to December 2021. RESULTS: A total of 6103 cases of COVID-19 and 1251 cases of dengue were managed at our institution, comprising a total of 3.9% (6103/155,452) and 0.8% (1251/155,452) of admissions, respectively. A surge in dengue hospitalisations in mid-2020 corresponded closely with the imposition of a community-wide lockdown. A total of 23 cases of PCR-proven COVID-19 infection with positive dengue serology were identified, of whom only two were true co-infections; both had been appropriately isolated upon admission. Average length-of-stay for dengue cases initially admitted to isolation during the pandemic was 8.35 days (S.D. = 6.53), compared with 6.91 days (S.D. = 8.61) for cases admitted outside isolation (1.44 days, 95%CI = 0.58-2.30, p = 0.001). Pre-pandemic, only 1.6% (9/580) of dengue cases were admitted initially to isolation-areas; in contrast, during the pandemic period, 66.6% (833/1251) of dengue cases were initially admitted to isolation-areas while awaiting the results of SARS-CoV-2 testing. CONCLUSIONS: During successive COVID-19 pandemic waves in a dengue-endemic country, coinfection with dengue and COVID-19 was uncommon. Routine COVID-19 testing for febrile patients with viral prodromes mitigated the potential infection-prevention risk from COVID-19 cases, albeit with an increased length-of-stay for dengue hospitalizations admitted initially to isolation.

7.
Am J Infect Control ; 50(4): 465-468, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653966

ABSTRACT

Sporadic clusters of health care-associated COVID-19 infection occurred in a highly vaccinated health care-workers and patient population, over a 3-month period during ongoing community transmission of the B.1.617.2 variant. Enhanced infection-prevention measures and robust surveillance systems, including routine-rostered-testing of all inpatients and staff and usage of N95-respirators in all clinical areas, were insufficient in achieving zero health care-associated transmission. The unvaccinated and immunocompromised remain at-risk and should be prioritized for enhanced surveillance.


Subject(s)
COVID-19 , COVID-19/prevention & control , Delivery of Health Care , Disease Outbreaks , Humans , Inpatients , SARS-CoV-2
10.
Am J Infect Control ; 49(6): 685-689, 2021 06.
Article in English | MEDLINE | ID: covidwho-1279522

ABSTRACT

OBJECTIVES: Since December 2019, COVID-19 has caused a worldwide pandemic and Singapore has seen escalating cases with community spread. Aggressive contact tracing and identification of suspects has helped to identify local community clusters, surveillance being the key to early intervention. Healthcare workers (HCWs) have contracted COVID-19 infection both at the workplace and community. We aimed to create a prototype staff surveillance system for the detection of acute respiratory infection (ARI) clusters amongst our HCWs and describe its effectiveness. METHODS: A prototypical surveillance system was built on existing electronic health record infrastructure. RESULTS: Over a 10-week period, we investigated 10 ARI clusters amongst 7 departments. One of the ARI clusters was later determined to be related to COVID-19 infection. We demonstrate the feasibility of syndromic surveillance to detect ARI clusters during the COVID-19 outbreak. CONCLUSION: The use of syndromic surveillance to detect ARI clusters amongst HCWs in the COVID-19 pandemic may enable early case detection and prevent onward transmission. It could be an important tool in infection prevention within healthcare institutions.


Subject(s)
COVID-19 , Pandemics , Disease Outbreaks , Electronic Health Records , Health Personnel , Humans , SARS-CoV-2 , Sentinel Surveillance , Singapore/epidemiology
11.
Singapore Med J ; 63(10): 577-584, 2022 10.
Article in English | MEDLINE | ID: covidwho-1280945

ABSTRACT

Introduction: Healthcare workers (HCWs) are a critical resource in the effort to control the COVID-19 pandemic. They are also a sentinel surveillance population whose clinical status reflects the effectiveness of the hospital's infection prevention measures in the pandemic. Methods: This was a retrospective cohort study conducted in Singapore General Hospital (SGH), a 1,822-bed tertiary hospital. Participants were all HCWs working in SGH during the study period. HCW protection measures included clinical workflows and personal protective equipment developed and adapted to minimise the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. HCW monitoring comprised staff contact logs in high-risk locations, twice-daily temperature monitoring, assessment of HCWs with acute respiratory illnesses (ARIs) in the staff clinic and, in the event of an exposure, extensive contact tracing, detailed risk assessment and risk-based interventions. HCW surveillance utilised monitoring data and ARI presentations and outcomes. Results: In the ten-week period between 6 January 2020 and 16 March 2020, 333 (17.1%) of 1,946 HCWs at risk of occupational COVID-19 presented with ARI. 32 (9.6%) screened negative for SARS-CoV-2 from throat swabs. Five other HCWs developed COVID-19 attributed to non-clinical exposures. From the nine COVID-19 exposure episodes investigated, 189 HCW contacts were identified, of whom 68 (36.2%) were placed on quarantine and remained well. Conclusion: Early in an emerging infectious disease outbreak, close monitoring of frontline HCWs is essential in ascertaining the effectiveness of infection prevention measures. HCWs are at risk of community disease acquisition and should be monitored and managed to prevent onward transmission.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Sentinel Surveillance , Retrospective Studies , Infection Control , Health Personnel
12.
J Med Virol ; 93(3): 1548-1555, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196475

ABSTRACT

During this coronavirus disease 2019 (COVID-19) pandemic, physicians have the important task of risk stratifying patients who present with acute respiratory illnesses. Clinical presentation of COVID-19, however, can be difficult to distinguish from other respiratory viral infections. Thus, identifying clinical features that are strongly associated with COVID-19 in comparison to other respiratory viruses can aid risk stratification and testing prioritization especially in situations where resources for virological testing and resources for isolation facilities are limited. In our retrospective cohort study comparing the clinical presentation of COVID-19 and other respiratory viral infections, we found that anosmia and dysgeusia were symptoms independently associated with COVID-19 and can be important differentiating symptoms in patients presenting with acute respiratory illness. On the other hand, laboratory abnormalities and radiological findings were not statistically different between the two groups. In comparing outcomes, patients with COVID-19 were more likely to need high dependency or intensive care unit care and had a longer median length of stay. With our findings, we emphasize that epidemiological risk factors and clinical symptoms are more useful than laboratory and radiological abnormalities in differentiating COVID-19 from other respiratory viral infections.


Subject(s)
Anosmia/pathology , COVID-19/diagnosis , COVID-19/pathology , Dysgeusia/pathology , Adult , Ageusia/diagnosis , Ageusia/virology , Anosmia/diagnosis , Anosmia/virology , COVID-19/epidemiology , Critical Care/statistics & numerical data , Dysgeusia/diagnosis , Dysgeusia/virology , Female , Humans , Intensive Care Units/statistics & numerical data , Length of Stay , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Risk Factors , SARS-CoV-2
14.
Am J Infect Control ; 49(4): 469-477, 2021 04.
Article in English | MEDLINE | ID: covidwho-907189

ABSTRACT

BACKGROUND: In the current COVID-19 pandemic, aggressive Infection Prevention and Control (IPC) measures have been adopted to prevent health care-associated transmission of COVID-19. We evaluated the impact of a multimodal IPC strategy originally designed for the containment of COVID-19 on the rates of other hospital-acquired-infections (HAIs). METHODOLOGY: From February-August 2020, a multimodal IPC strategy was implemented across a large health care campus in Singapore, comprising improved segregation of patients with respiratory symptoms, universal masking and heightened adherence to Standard Precautions. The following rates of HAI were compared pre- and postpandemic: health care-associated respiratory-viral-infection (HA-RVI), methicillin-resistant Staphylococcus aureus, and CP-CRE acquisition rates, health care-facility-associated C difficile infections and device-associated HAIs. RESULTS: Enhanced IPC measures introduced to contain COVID-19 had the unintended positive consequence of containing HA-RVI. The cumulative incidence of HA-RVI decreased from 9.69 cases per 10,000 patient-days to 0.83 cases per 10,000 patient-days (incidence-rate-ratio = 0.08; 95% confidence interval [CI] = 0.05-0.13, P< .05). Hospital-wide MRSA acquisition rates declined significantly during the pandemic (incidence-rate-ratio = 0.54, 95% CI = 0.46-0.64, P< .05), together with central-line-associated-bloodstream infection rates (incidence-rate-ratio = 0.24, 95% CI = 0.07-0.57, P< .05); likely due to increased compliance with Standard Precautions. Despite the disruption caused by the pandemic, there was no increase in CP-CRE acquisition, and rates of other HAIs remained stable. CONCLUSIONS: Multimodal IPC strategies can be implemented at scale to successfully mitigate health care-associated transmission of RVIs. Good adherence to personal-protective-equipment and hand hygiene kept other HAI rates stable even during an ongoing pandemic where respiratory infections were prioritized for interventions.


Subject(s)
COVID-19/prevention & control , Cross Infection/prevention & control , Infection Control/methods , SARS-CoV-2 , Catheter-Related Infections/prevention & control , Catheterization, Central Venous/adverse effects , Humans , Methicillin-Resistant Staphylococcus aureus , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , United States
16.
Am J Trop Med Hyg ; 103(5): 2005-2011, 2020 11.
Article in English | MEDLINE | ID: covidwho-807890

ABSTRACT

During the COVID-19 pandemic, distinguishing dengue from cases of COVID-19 in endemic areas can be difficult. In a tertiary hospital contending with COVID-19 during a dengue epidemic, a triage strategy of routine COVID-19 testing for febrile patients with viral prodromes was used. All febrile patients with viral prodromes and no epidemiologic risk for COVID-19 were first admitted to a designated ward for COVID-19 testing, where enhanced personal protective equipment was used by healthcare workers until COVID-19 was ruled out. From January to May 2020, 11,086 admissions were screened for COVID-19; 868 cases of COVID-19 were diagnosed in our institution, along with 380 cases of dengue. Only 8.5% (943/11,086) of suspected COVID-19 cases were concurrently tested for dengue serology due to a compatible overlapping clinical syndrome, and dengue was established as an alternative diagnosis in 2% (207/10,218) of suspected COVID-19 cases that tested negative. There were eight COVID-19 cases with likely false-positive dengue serology and one probable COVID-19/dengue coinfection. From April to May 2020, 251 admissions presenting as viral prodromes with no respiratory symptoms were screened; of those, 15 cases had COVID-19, and 2/15 had false-positive dengue IgM. Epidemiology investigations showed no healthcare-associated transmission. In a dengue epidemic season coinciding with a COVID-19 pandemic, dengue was established as an alternative diagnosis in a minority of COVID-19 suspects, likely due to early availability of basic diagnostics. Routine screening of patients with viral prodromes during a dual outbreak of COVID-19 and dengue enabled containment of COVID-19 cases masquerading as dengue with false-positive IgM.


Subject(s)
COVID-19/epidemiology , Dengue/epidemiology , Disease Outbreaks , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , COVID-19 Nucleic Acid Testing , Dengue/complications , Dengue/diagnosis , Dengue/drug therapy , Dengue Virus/immunology , Dengue Virus/isolation & purification , Diagnosis, Differential , Female , Humans , Immunoglobulin M/blood , Male , Middle Aged , Oropharynx/virology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Singapore/epidemiology , Tertiary Care Centers , Triage/standards
18.
Surg Infect (Larchmt) ; 21(9): 760-765, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-680792

ABSTRACT

Background: In the ongoing coronavirus disease 2019 (COVID-19) pandemic, resuming provision of surgical services poses a challenge given that patients may have acute surgical pathologies with concurrent COVID-19 infection. We utilized a risk-stratified approach to allow for early recognition and isolation of potential COVID-19 infection in surgical patients, ensuring continuity of surgical services during a COVID-19 outbreak. Patients and Methods: Over a four-month period from January to April 2020, surgical patients admitted with concurrent respiratory symptom, infiltrates on chest imaging, or suspicious travel/epidemiologic history were placed in a dedicated ward in which they were tested for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). If emergency operations were necessary prior to the exclusion of COVID-19, patients were managed as per suspected cases of COVID-19, with appropriate precautions and full personal protective equipment (PPE). Results: From January through April 2020, a total of 8,437 patients were admitted to our surgical department; 5.9% (498/8437) required peri-operative testing for SARS-CoV-2. Because testing was in-house with turnaround within 24 hours, only a small number of emergency operations (n = 10) were conducted for suspected COVID-19 cases prior to results; none tested positive. The testing yield was lower in surgical inpatients compared with medical inpatients (odds ratio [OR] = 0.20, 95% confidence interval [CI], 0.12-0.32, p < 0.001). Three operations were conducted in known COVID-19 cases; all healthcare workers (HCWs) used full PPE. A risk-stratified testing strategy picked up previously unsuspected COVID-19 in six cases; 66.7% (4/6) were asymptomatic at presentation. Although 48 HCWs were exposed to these six cases, delayed diagnosis was averted and no evidence of spread to patients or HCWs was detected. Conclusion: A risk-stratified approach allowed for early recognition, testing, and isolation of potential COVID-19 infection in surgical patients, ensuring continuity of surgical services.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Inpatients , Patient Isolation/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Adult , COVID-19 , Disease Outbreaks , Female , Humans , Male , Middle Aged , Pandemics , Personal Protective Equipment , Risk Assessment , Singapore , Surgical Procedures, Operative , Tertiary Care Centers
19.
Infect Control Hosp Epidemiol ; 41(7): 765-771, 2020 07.
Article in English | MEDLINE | ID: covidwho-622776

ABSTRACT

OBJECTIVE: Staff surveillance is crucial during the containment phase of a pandemic to help reduce potential healthcare-associated transmission and sustain good staff morale. During an outbreak of SARS-COV-2 with community transmission, our institution used an integrated strategy for early detection and containment of COVID-19 cases among healthcare workers (HCWs). METHODS: Our strategy comprised 3 key components: (1) enforcing reporting of HCWs with acute respiratory illness (ARI) to our institution's staff clinic for monitoring; (2) conducting ongoing syndromic surveillance to obtain early warning of potential clusters of COVID-19; and (3) outbreak investigation and management. RESULTS: Over a 16-week surveillance period, we detected 14 cases of COVID-19 among HCWs with ARI symptoms. Two of the cases were linked epidemiologically and thus constituted a COVID-19 cluster with intrahospital HCW-HCW transmission; we also detected 1 family cluster and 2 clusters among HCWs who shared accommodation. No transmission to HCWs or patients was detected after containment measures were instituted. Early detection minimized the number of HCWs requiring quarantine, hence preserving continuity of service during an ongoing pandemic. CONCLUSIONS: An integrated surveillance strategy, outbreak management, and encouraging individual responsibility were successful in early detection of clusters of COVID-19 among HCWs. With ongoing local transmission, vigilance must be maintained for intrahospital spread in nonclinical areas where social mingling of HCWs occurs. Because most individuals with COVID-19 have mild symptoms, addressing presenteeism is crucial to minimize potential staff and patient exposure.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Infection Control/methods , Pandemics/prevention & control , Personnel, Hospital , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Population Surveillance , Adult , COVID-19 , Cluster Analysis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Early Diagnosis , Female , Hospitals, General , Humans , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Singapore/epidemiology , Symptom Assessment , Young Adult
20.
Am J Infect Control ; 48(9): 1056-1061, 2020 09.
Article in English | MEDLINE | ID: covidwho-619967

ABSTRACT

BACKGROUND: During an ongoing outbreak of COVID-19, unsuspected cases may be housed outside of dedicated isolation wards. AIM: At a Singaporean tertiary hospital, individuals with clinical syndromes compatible with COVID-19 but no epidemiologic risk were placed in cohorted general wards for COVID-19 testing. To mitigate risk, an infection control bundle was implemented comprising infrastructural enhancements, improved personal protective equipment, and social distancing. We assessed the impact on environmental contamination and transmission. METHODS: Upon detection of a case of COVID-19 in the dedicated general ward, patients and health care workers (HCWs) contacts were identified. All patient and staff close-contacts were placed on 14-day phone surveillance and followed up for 28 days; symptomatic contacts were tested. Environmental samples were also obtained. FINDINGS: Over a 3-month period, 28 unsuspected cases of COVID-19 were contained in the dedicated general ward. In 5 of the 28 cases, sampling of the patient's environment yielded SARS-CoV-2; index cases who required supplemental oxygen had higher odds of environmental contamination (P = .01). A total of 253 staff close-contacts and 45 patient close-contacts were identified; only 3 HCWs (1.2%, 3/253) required quarantine. On 28-day follow-up, no patient-to-HCW transmission was documented; only 1 symptomatic patient close-contact tested positive. CONCLUSIONS: Our institution successfully implemented an intervention bundle to mitigate COVID-19 transmission in a multibedded cohorted general ward setting.


Subject(s)
Coronavirus Infections/transmission , Cross Infection/prevention & control , Disease Transmission, Infectious/prevention & control , Patients' Rooms , Pneumonia, Viral/transmission , Quarantine/methods , Adult , Aged , Betacoronavirus , COVID-19 , Contact Tracing , Coronavirus Infections/prevention & control , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Patient Care Bundles , Patient Isolation , Personal Protective Equipment , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Singapore/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL